Conformally Osserman Manifolds

نویسنده

  • Y. NIKOLAYEVSKY
چکیده

An algebraic curvature tensor is called Osserman if the eigenvalues of the associated Jacobi operator are constant on the unit sphere. A Riemannian manifold is called conformally Osserman if its Weyl conformal curvature tensor at every point is Osserman. We prove that a conformally Osserman manifold of dimension n 6= 3, 4, 16 is locally conformally equivalent either to a Euclidean space or to a rank-one symmetric space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nilpotent Spacelike Jorden Osserman Pseudo-riemannian Manifolds

Pseudo-Riemannian manifolds of balanced signature which are both spacelike and timelike Jordan Osserman nilpotent of order 2 and of order 3 have been constructed previously. In this short note, we shall construct pseudo-Riemannian manifolds of signature (2s, s) for any s ≥ 2 which are spacelike Jordan Osserman nilpotent of order 3 but which are not timelike Jordan Osserman. Our example and tech...

متن کامل

Completeness, Ricci Blowup, the Osserman and the Conformal Osserman Condition for Walker Signature (2, 2) Manifolds

Walker manifolds of signature (2, 2) have been used by many authors to provide examples of Osserman and of conformal Osserman manifolds of signature (2, 2). We study questions of geodesic completeness and Ricci blowup in this context.

متن کامل

Osserman manifolds of dimension 8

For a Riemannian manifold M n with the curvature tensor R, the Jacobi operator RX is defined by RX Y = R(X, Y)X. The manifold M n is called pointwise Osserman if, for every p ∈ M n , the eigenvalues of the Jacobi operator RX do not depend of a unit vector X ∈ TpM n , and is called globally Osserman if they do not depend of the point p either. R. Osserman conjectured that globally Osserman manif...

متن کامل

Curvature Homogeneous Spacelike Jordan Osserman Pseudo-riemannian Manifolds

Let s ≥ 2. We construct Ricci flat pseudo-Riemannian manifolds of signature (2s, s) which are not locally homogeneous but whose curvature tensors never the less exhibit a number of important symmetry properties. They are curvature homogeneous; their curvature tensor is modeled on that of a local symmetric space. They are spacelike Jordan Osserman with a Jacobi operator which is nilpotent of ord...

متن کامل

, Osserman and Ivanov - Petrova Pseudo - Riemannian Manifolds

We exhibit pseudo Riemannian manifolds which are Szabó nilpotent of arbitrary order, or which are Osserman nilpotent of arbitrary order, or which are Ivanov-Petrova nilpotent of order 3.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008